
Themis

A single library for consistent data security across all platforms

Implementing cryptography in cross-platform applications is very hard. Choosing cipher suites, defining key lengths, and designing key exchange

schemes require plenty of particular competences, and lead to mistakes when done by application developers.

Themis is an open-source high-level cryptographic services library for mobile and server platforms. Themis provides ready-made building blocks

(“cryptosystems”) for secure data storage, message exchange, socket connections, and authentication.

Themis brings unified cryptographic security across multiple platforms and is suitable for building sophisticated data security systems. We are

using Themis as a core library for our other security products.

Themis contains 4 core cryptographic systems that meet most of the needs modern applications have towards data security.

Themis product sheet, Q1 2022

Secure Cell for secure storage: container for protecting stored data

using symmetric secret. Use Secure Cell to encrypt data at rest: from

API tokens to database records.

Secure Session for network exchange: session-oriented encrypted

data exchange with forward secrecy for protecting sequential data

exchanges (API, sessions, chats, sockets).

Secure Comparator for zero-leakage authentication: zero-knowledge

proof-based protocol

 for authentication and handling requests that

contain sensitive data, without exposing secrets to the network.

Secure Message for exchanging messages: public key container for

sending encrypted and signed data between two parties, to prevent

MITM attacks and avoid single secret leakage.

License: free, Apache 2 license. Custom protocols design, integration assistance, and support contracts available depending on your use case.

KEY BENEFITS

Real-world cryptography

Solves 90% use cases for protecting

data in mobile and backend apps.

Easy to use, hard to misuse

Hides cryptographic details, gives

simple building blocks.

Application-level encryption

Strong, audited, tested cryptography

for your applications.

Recommended by OWASP

Themis is used by numerous apps, and

is recommended by security guidelines.

100% compatible API

Fits perfectly for multi-platform

apps (mobile, web, server).

Get to market quickly

Themis prevents devs from making

security mistakes, saving their time.

Core library: C/C++.

Mobile: iOS (Swift, Objective-C), Android (Java, Kotlin), React Native.

Server-side: WASM, Rust, Ruby, Python, Node.js, Go, Java, PHP.

OS: Linux (x86/ARM), macOS, iOS, Android, Windows (experimental).

Ports: Chrome, Redis, PostgreSQL.

Feature documentation and example apps are available for all

supported languages and platforms.

LANGUAGES AND PLATFORMS

Build end-to-end encryption schemes: encrypt data locally on one

app, use it encrypted everywhere, decrypt only for authenticated user.

Exchange secrets securely: share sensitive data between parties,

build simple chat app between patients and doctors.

Encrypt data fields before storing in the DB (“field-level encryption”).

Encrypt stored secrets in your apps and backend: API keys, session

tokens, files.

Typical use cases

https://docs.cossacklabs.com/themis/crypto-theory/cryptosystems/secure-cell/
https://docs.cossacklabs.com/themis/crypto-theory/cryptosystems/secure-session/
https://docs.cossacklabs.com/themis/crypto-theory/cryptosystems/secure-comparator/
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://en.wikipedia.org/wiki/Zero-knowledge_proof
https://docs.cossacklabs.com/themis/crypto-theory/cryptosystems/secure-cell/

Secure cell Secure message

Secure Comparator

Documentation

Secure session

Themis product sheet, Q1 2022

Secure Сell provides protection of the stored data, such as API

tokens, database records or files. Secure Cell uses symmetric

encryption with AES256 in GCM or CTR modes.

Secure Message provides a simple way to protect your messages

and bind them to the credentials of communicating peers using

strong cryptography. It adds confidentiality, integrity, and

authenticity to your message in one shot (as a stateless single

function call).

To encrypt the payload, Secure Message uses Secure Cell

primitive. Secure Message can work in signature and encryption

modes.

Cryptographic primitives used:

Cryptographic primitives used:

Secure Comparator allows the parties to prove that they both share

some secret — a password, a secret request identifier, or any other

verification data:

docs.cossacklabs.com/themis/

Secure Session is a sequence dependent, stateful messaging

session system. It works best for P2P communication with

preserved session state, i.e. web sockets or API sessions. Secure

Session is decoupled and independent from any networking

implementation. It is protocol-agnostic and operates on the 5th

layer of the OSI model.

Secure Cell provides key API and passphrase API. First uses an

embedded key derivation function (KDF), second uses a

password-based KDF, so you can use reasonable long keys or

passphrases as an argument.

Secure Session is stateful and requires session negotiation before

data exchange. Session negotiation is carried out via ECDH with

additional security measures against MitM. Data exchange is a

process of encrypting source data into datagram and sending it to

a remote party.

Secure Session can be used via callback API or buffer-aware (“data

only”) API methodology.

� Seal mode provides the strongest security guarantees and

prevents data tampering. AES-256-GCM.

� secure end-to-end communication with perfect forward secrecy

& replay protection;

� zero data is leaked: no data which could enable to reconstruct/

replay the secret is transmitted;

� protection against dishonest verifiers: a verifier can’t collect

sufficient data to reuse it for further authentication.� strong mutual peer authentication;

� low negotiation round-trip;

� strong encryption (ECC + AES);

� straightforward integration process.

� Token protect mode is length-preserving — encrypted objects

don’t change lengths, yet their authentication data has to be

stored elsewhere. AES-256-GCM.

� Context imprint mode is a length-preserving mode that

contains no authentication tag data. AES-256-CTR.

Secure Cell can be used in 3 different modes:

Secure Session is lightweight, easy to use and features:

Crypto stack

NIST P-256 + ECDSA

Socialist Millionaire’s Protocol

NIST P-256 + Secure Cell

Armoured ed25519

RSA + PSS + PKCS#7

SHA-256

RSA + PKCS#7 + Secure Cell

Mode

Elliptic Curve: sign

Core protocol

Elliptic Curve: encrypt

Computations

RSA: sign

Hash

RSA: encrypt

https://docs.cossacklabs.com/themis/

